- - Null Winds Wheel Fairings

Null Winds Wheel Fairings

Null Winds Technology launches a Kickstarter campaign in hopes of bringing it’s "Upper Wheel Fairings" to market for the delight of urban cyclists everywhere.

The Campaign 

Upper Wheel Fairings reinvent the bicycle wheel to minimize overall vehicle drag, increasing headwind penetration speeds.

Upper Wheel Fairings for Road Bikes

With your help, we will soon introduce revolutionary wheel drag-reduction technology to the bicycle world with our first wheel-fairing product. Shielding a bicycles’ faster-moving upper wheel surfaces from headwinds yields dramatic increases in speed without sacrificing crosswind stability. And these gains in pedaling efficiency actually increase in the presence of headwinds. 

One can readily feel the difference in penetrating even a slight headwind. Test ourUpper Wheel Fairings for yourself, and you will never again want to ride without them. Please help us introduce this new invention, by becoming one of the very first to enjoy our drag-reducing Upper Wheel Fairings on your road bicycle.

Our Brief Story

Upper Wheel Fairings shield critical drag-inducing surfaces on a bicycle from headwinds, significantly boosting performance. With our Upper Wheel Fairingsinstalled, cyclists report dramatic gains in speed while penetrating headwinds. One can readily feel the difference, as headwinds really slow a bicycle having exposed upper wheel surfaces. Depending on headwind conditions, riders have achieved speed gains ranging between three to over 20 percent. And the relative gains only tend to increase in rising headwinds. See our website for the latest test reports. 

Unshielded upper wheel surfaces augment critical drag on wheeled vehicles. In fact, most vehicles with unshielded upper wheels are needlessly aerodynamically handicapped. Our Upper Wheel Fairings restore a bicycle to a more optimal, minimal-drag configuration. 

While wheel fairings generally are not allowed under traditional race rules, the recreational or commuting cyclist need not adhere to the drag-inducing restrictions of the race community. The cycling public should enjoy the inherent drag-reduction that comes from shielding the upper wheels from headwinds. However, we have found that the bicycle industry has little interest in promoting this potentially disruptive innovation, since for decades their focus has been mainly for the benefit of racers.

Your contribution will not only help facilitate our first production run, but should our campaign goal be reached quickly, it may also help garner more general media attention. We need your support. Please contribute, and cycle smarter with Null Winds Technology.  

About the Product 

Our first product is a kit of Upper Wheel Fairings adaptable for installation on most traditional-framed road-style bicycles. There are an estimated 1.5 million road bikes sold in the United States each year, with a greater number sold in Europe, not to mention the rest of the world.  And the total number of road bikes already in use is likely mTuch greater.  Our product should be suitable for most of that market. 

Fairings are made of aircraft aluminum, providing the best combination of stiffness and weight. Total weight added to the bicycle is just over two pounds. The additional weight increases the combined weight of the bicycle and average rider by just over one percent. Any slight loss in speed while climbing steeper hills as a result of this slight increase in weight is more than offset by the increased wind penetration speeds achieved both on the downhill segments and on the flats whenever headwinds are present. 

Each fairing is gently curved by a stiffener bar fastened to the inside surface, such that the fairing can be positioned flat adjacent to the wheel rim. After powder-coat paint is applied, nylon spacers are attached along the inside surface of the fairing to protect the wheel rims from incidental contact with the fairing during heavy vibration or side-wind gusts. 

Initial installation normally requires several hours to complete by first-time installers. The procedure requires installing mounting clamps and mount bars to the fork and rear stay assemblies, arranging the fairings on the bicycle, locating two holes to be drilled in each fairing, and aligning the fairing to the wheel assembly. Once the mount hardware is secured to the frame, the fairing can be easily removed from the bicycle and replaced to the same position in seconds, facilitating the removal of the wheel when necessary. 

Three-point adjustable mount; To remove fairing, simply loosen two outer locknuts and remove a third. Replace fairing to same location in seconds.

For those unfamiliar with bicycle repair, we recommend using an experienced bike mechanic for the initial installation. Your local dealer should be able to help. Before installing, please review both the installation manual and also the video presentation for installation tips. The installation manual includes detailed instructions on measuring the fork and rear stay diameters (using a piece of string), needed for specifying clamp sizes. These measurements must be taken for each particular bicycle before placing an order. 

We are confident that our product will eventually find widespread use in the cycling world, simply because it works.  Our Upper Wheel Fairings represent perhaps the single-most effective drag-reducing modification that can be made to the common road bicycle.  Surprisingly, the reason is actually quite simple.

Shielding is highly effective, since drag is very highly concentrated on the upper wheel. Shielding optimally reduces total vehicle drag.

And since the power needed to overcome drag rises in proportion to the cube of the wind speed, shielding the upper wheel surfaces — thereby reducing the effective speeds of impinging winds — yields dramatic gains in propulsive efficiency. And from examining the wind-profile diagram, it becomes clear that these gains increase rapidly in rising headwinds. Propulsive efficiency actually increases in stronger headwinds. Recent on-bike road tests confirm this dramatic trend.

This longstanding, drag-inducing practice should be limited to the racing world. The general public need not endure the painful extra effort that racers feel while cycling against a headwind. Instead, we want all to discover the performance benefit provided by shielding the upper wheel surfaces of recreational and commuting bicycles.

About the History

Recent efforts of the bicycle industry to reduce drag have been largely directed toward the development of very expensive aerodynamic wheels, which are often made of carbon fiber. Wheel rims have become deeper, heavier, and with fewer spokes, all with increasing expense. Our Upper Wheel Fairings are generally more effective — and economical — than these expensive aero wheels, since wheel drag is actually concentrated only on the uppermost wheel surfaces. Even so, bicycles using these expensive aero wheels will also become faster with our Upper Wheel Fairingsinstalled. 

This claim may seem a bit hard to believe. At first, I also had trouble comprehending the significance of this innovation. So please let me share a little history of my discovery. 

Fairings mount screws slip easily beneath fairing stay during removal

As an engineer, I was already aware of the wind profile across a vehicle wheel: where the wind is null at the ground level and up to twice the vehicle speed at the top. Since the ground is not moving, there can be no wind at the bottom of the wheel. Where there is no wind, there can be no drag. This point is often overlooked. 

And the upper section of the wheel moves forward against the oncoming headwind, thereby magnifying the effective wind speeds. At first, this insight can seem a bit confusing since the wheel itself moves at the vehicle speed. In fact, we have noticed incorrect diagrams of this wind profile sometimes published in the engineering literature. So the true wind profile across the moving wheel is the first thing to keep in mind. 

The second point to understand is the relative drag sensitivities of various wheel surfaces. Since I was once a paraglider pilot in southern California, I was also keenly aware how significant drag can be on the thin lines used on a paraglider wing. In fact, in the early days of the sport, I used to spend long hours modifying my own glider with extra-thin cascaded lines in order to fly faster. 

Spokes are like thin lines, with relatively high drag sensitivities. However, spokes above the axle of a wheel are moving forward must faster than the vehicle, which dramatically increases drag and the power needed to propel the vehicle. So it seemed logical that these upper wheel surfaces needed to be shielded from headwinds. I began to wonder why I did not see upper wheel fairings on bicycles. When I started searching for prior art on the internet, I was quite surprised that I could not find anything. So right then I decided that if no one else was going to investigate this concept, I would. 

Original Prototype with 36 spoke-count wheels

I quickly fashioned some crude fairings to my 35 year-old heavy road bike. Since I had not ridden a bike in many years, I was shocked the first time I managed to test my old bike fitted with crude prototypes of upper wheel fairings. I simply could not understand just how I was now able to ride the same old heavy bike — configured with crude upper wheel fairings — in at least one gear higher than when I was more than 35 years younger. My bike weighed more than 25 lbs and had high, 36 spoke-count wheels. Though I did not fully understand the reasons, I knew at that moment that I had discovered something significant. 

My next step was to purchase a modern low spoke-count carbon-frame bike. After testing both bikes on the same six-mile loop, I found that my old heavy bike with the fairings was just as fast as the new modern bike without fairings. The difference over the 22-minute loop was just a couple of seconds. Imagine my excitement, as I knew right then that I had likely discovered something fundamental about the wheel. 

Poor-man’s wind tunnel test fixture

From that point, it was simply a long effort to conduct further tests and understand the mechanics of this innovation. I designed a crude fixture to test a bicycle wheel driven by an electric motor on the top of my truck, functioning as a poor-man’s wind tunnel. A friend — a retired aerospace physicist — joined my effort in the Lancaster desert to help record data over a wide range of wind speeds, up to 55 mph. We measured definite reductions in drag on the wheel, but not enough to explain the speed gains that we were measuring during on-the-bike road tests. This was a bit puzzling. 

Reliable co-pilot, recording the data

As a mechanical engineer, I decided to reexamine the published literature for the mechanical models commonly used to model drag on a bicycle wheel, and quickly found a problem. The engineering community seemed to misunderstand precisely what was happening when a wheel is used on vehicle. Past studies claimed measured gains using wheel fairings were marginal at best. However, the proof that these conclusions were incorrect was in the data from our own bicycle road tests. 


It did not take long to understand the correct mechanical model for drag on a vehicle wheel, which forms the basis for an extensive patent application, which is now pending. After considerable effort to prepare and file the patent application, we remain confident that the application will prove successful. High-speed vehicle wheels have been around for nearly 100 years without this simple innovation. It is time that the drag-reducing benefits from using our Upper Wheel Fairings are introduced to the world. 

Sea Otter Bike Festival, April 2013

We introduced early prototypes for the first time at our booth during last year’s Sea Otter Classic 2013 bike festival near Monterrey, California. While riding our demonstration bikes both with and without fairings, a number of riders experienced dramatic reductions in drag. We received only positive comments from riders. Nearly everyone wanted to know when our product would be available. At Sea Otter, we even met an inventor of the mountain bike, who came to our booth to offer his congratulations for this innovation. 

Pro rider explaining unexpected crosswind stability to Garth Magee

Also at Sea Otter, a professional rider from Road2Recovery who was also concerned about rider safety for his veteran riders, reported enhanced stability in the presence of crosswinds. While he noticed crosswind forces on his body, he reported sensing no corresponding sideways increases on the bicycle, and found this puzzling. While enhanced stability was not our primary goal in the development of this innovation, it is readily explainable: Upper Wheel Fairings actually enhance the effective traction of a vehicle. Any potential crosswind forces caused by the addition of our Upper Wheel Fairings is largely offset by the enhanced tire traction. Bicycles fitted with our fairings are often more stable in gusty wind conditions. 

Since last spring, we have refined the early prototypes into a smaller production design that can be fitted to most traditional road bikes. The proper drag model indicates that in most cases, the smaller design is actually more efficient than the early prototypes. We have been using this design to conduct a number of precision road tests, in order to confirm the performance gains. 

As mentioned, the measured gains are dramatic. Racers tell us that a five percent increase in speed is a huge increase for a bicycle. And most tests have greatly exceeded five percent. Most racers find our claims are hard to believe. For this reason, we have used the latest precision power meters, which also measure headwinds, to record our data outside under real-world road conditions. Detailed test reports are available on our website. And many more tests are planned this spring and summer.

One of our first independent tests was indoors at a Velodrome near Los Angeles last fall. For various technical reasons regarding the instrumentation that was used, the reported data was inconsistent and unrepeatable. However, the test rider — a top-level Category-1 racer — reported that the faired bike definitely felt faster under null wind conditions. When asked, he indicated that he definitely preferred the faired bike to the unfaired version. While disappointed that we did not get good data, I knew that the drag model predicts only minimal gains under null wind conditions anyway. 

First ibike Newton data from France

One of the first independent tests conducted outside in strong headwinds was by former road racer living in France, who is now a venture capitalist focused on the bicycle industry. He had contacted me last fall, and I sent him the first early set of fairings. After hurriedly installing the fairings himself over the weekend on his own bike, he reported gains of “two or three” miles an hour the next day. And late last year, an active road racer testing in a strong headwind near Lancaster, CA was excited to experience similarly dramatic gains.
So far we have installed our fairings on the regular commuting bikes of a number of veteran cyclists. All have reported immediate increases in speed when facing headwinds. The first local commuter to try the fairings was a bike mechanic, who reported shaving nearly 10 minutes off his 45-minute commute into headwinds toward his job in Santa Monica. Another veteran rider also reported setting a personal best on his second commute to work. Still another extreme distance racer put over 800 miles on his bike in January, without having to adjust the initial installation of the fairings at all. He also reported having changed a tire once without needing to remove the fairings.
Bikes of some early testers

All these reports have been encouraging. However, the proof is in the test data. We have now obtained confirming data in sufficient quantity to be certain that the gains are readily achievable.

Please visit our website for detailed test reports, and a more detailed discussion about this technology. As the patent application still remains unpublished for now, we must restrict releasing further details about the correct drag model until later in 2014. However, I look forward to discussing this technology in greater depth at that time, including the reasons why upper wheel drag forces are actually further magnified against propulsive counter-forces. 

About the Future 

In the future, our drag-reduction technology will have implications beyond the world of cycling. Automobiles and trucks with exposed upper wheels are needlessly inefficient. Have you ever wondered why jeep vehicles are particularly bad gas-guzzlers? Their exposed tires have aggressive tread patterns oriented directly against the wind at the worst location, near the top of the tire.  This drag-inducing effect is exacerbated at highway speeds, wasting fuel that could be easily saved by extending the front fenders forward to shield the upper wheels.

Exposed upper wheels induce considerable vehicle drag at highway speeds, especially when facing any headwind

And while we are not familiar with the complex rules of automotive racing, we must conclude from knowing the correct drag model that many modern race cars are designed with inefficient front wings, likely augmenting total vehicle drag unnecessarily.

Drag-augmenting design of F1 front wing

And large trucks with many more wind-exposed tires have a similar problem. Although improving truck efficiencies is a recent area of intense research, it is clear to us that wheel fairing technology in use today is overly extensive — inducing too much drag — thereby offsetting much of the intended benefit.

Overly extensive trailer fairing augments drag

Thus, we expect our drag-reducing technology will eventually contribute to the worldwide efforts to improve fuel efficiencies in automobiles. Hence, our innovativeUpper Wheel Fairings can be considered green technology, helping to reduce fuel consumption for the benefit our environment. Even if you do not own a road bicycle, we hope you will consider contributing to our success, and help enable us to eventually convince the automotive industry to improve the aerodynamics of many fuel-inefficient vehicles.

About the Campaign

Our production prototype is quite close to the final mechanical configuration. A few minor details must be checked before bringing the product to market. However, this process is expected to go smoothly during our active Kickstarter campaign. 

One remaining issue is to check the fit of the fairings for a variety of caliper brakes. We also need to confirm that the current design can indeed accommodate a wide range of bike frame sizes. We have sources for the various parts, as well as for the manufacturing of the fairings and mount bars, together with paint and labeling. We need to finalize the installation manual and installation video, complete packaging labeling, and organize warehousing for product shipping and distribution. 

No doubt there remains considerable work ahead. Still, the innate simplicity of the final product reduces our risk for putting together the organization needed for the deliver our rewards. Most of the work is scaleable, and easily out-sourced to a variety of local machine and paint shops. We already have in place a professional accounting software package needed to handle inventory and customer data. An e-commerce software package is also available which directly integrates with our current accounting software. As order volumes increase, we need only train a bookkeeper and assemblers to deliver rewards to our backers, and provide customer service.

Public introduction at Seattle Bike Expo, March 2014

Marketing and sales is another area that requires serious attention. Until recently, we had not launched any advertising or promotion, other than placing our booth at Sea Otter last year to announce this innovation. Garth Magee attended the Interbike Industry Conference last September in Las Vegas, where he happened to meet the inventor of popular low spoke-count aerodynamic wheels. He in turn introduced Magee to the president of a major manufacturer of perhaps the most popular aerodynamic rims used by many racers today. So with these contacts made in our short time exposed to the bicycle industry, it is clear that some of the major bike companies are becoming aware of this innovation. Still, few have yet to fully comprehend the significance of this technology. 

White fairings with zinc-coated, serrated fairing-anchor lock-nuts

We have refrained from premature promotion, until we were certain that our data firmly supports our claims, and that we had mapped a clear path to producing our first product. We are now ready for our launch, and are beginning to advertise. Still, we need your support. 

Black fairings with stainless steel, serrated fairing-anchor lock-nuts

Overcoming incorrect assumptions about the drag mechanics of the vehicle wheel is a daunting challenge. Leading bicycle companies have a long history developing aerodynamic technology specifically geared for the race community. Decades of marketing from the bicycle industry has largely convinced the cycling public that dramatic advances are simply not possible. 

Please help us overcome this entrenched view by contributing to our campaign and spreading the word about this innovation. Reaching our campaign goal will provide the funds needed to order the wide variety of clamps, economically manufacture the other parts, rent needed warehouse space, hire staff, advertise and demonstrate future market potential for our product.

Contribute $45 and receive this reward

We are confident that we now have the capability to ship a limited number of early rewards by early summer. If we exceed our goal, a larger number of rewards should be shipped in late summer. And if we greatly exceed our goal, it may be early fall before we are properly organized to ship the larger volumes. While the ultimate reward volume from this campaign is hard to predict, we hope to ship all rewards by fall. In any case, we are committed to shipping all rewards (each priced at a substantial discount over retail) before introducing our product to the general market. 

Please contribute to our campaign, and spread the word through Facebook and other social media. Help us change the bicycle world for the better. By contributing, you will also help enable us to eventually bring needed fuel savings to the automotive world. Help us introduce this green technology into both the bicycle and the automotive industries. Our drag-reducing technology can make bicycles a more popular means of transportation, and can also contribute to improving fuel economies of many automobiles and trucks, thereby improving the environmental health of our planet.

Installation Requirements

Installation Procedure

Fairings are installed in a series of steps:

  • Clamps are adjusted and fitted to the front forks and rear stays of the frame.
  • Mount bars are attached to clamps, and positioned proper distance from the axle.
  • Fairing stay bars are positioned and secured to the lower clamps.
  • Clamp retaining stays are secured to the front upper clamps, preventing clamps from sliding down highly tapered forks.
  • Fairings are positioned level on both sides of the wheel, adjacent to the wheel rim, and loosely secured using the fairing stay clamps and locknuts. Fairing stays are secured into position by tightening the lower clamp locknuts. The locations of two thru-holes to be drilled in each fairing are located under the mount bars and marked on each fairing.
  • Fairings are removed and the two marked holes are drilled in each fairing.
  • Fairings are installed and positioned adjacent to the rim with sufficient clearance to minimize rubbing against the rim, while providing adequate wind shielding of wheel surfaces.

Bike Requirements

The fairings can be mounted to most traditional-framed (metal or carbon), road bikes having caliper rim brakes (using standard pads without tire guides) if the following minimum clearances exist:

  • On the front, a minimum clearance space of at least 3.8 cm exists between the inner surfaces of the forks. The clearance should be confirmed to exist along the entire length of the fork between the axle and near the inner rim of the wheel (up to 29 cm measured from the axle). See Figure 1 for this measurement.
  • At a distance of 29 cm measured from the axle along the length of the fork, the circumference of the fork at this location does not exceed 6-3/8 inches (16.2 cm). See Figure 2 (a string is used to measure the circumference at this location).
  • At a distance of 19.5 cm measured from the axle along the length of the fork, a minimum of 5.0 cm of clearance space exists between the inner surfaces of the fork assembly. See Figure 3.
  • At a distance of 29 cm measured from the axle along the length of the fork, the total width measured between the outermost surfaces of the fork at this location should not exceed 3.375 inches (8.6 cm). 
  • Bicycle rims should be 700c in size.
  • Tires should not exceed 32 mm in width (700x32c). 
  • Caliper brake pads that include narrow tire guide ears may need to be replaced with standard pads without tire guide ears. 

While we have not yet found a road bike not conforming to these clearance requirements, some carbon forks may have particularly narrow inside clearances for the wheel, making installation of fairings somewhat more challenging. For those situations, please measure your bike carefully to ensure adequate clearance.

Leave a reply
Share on